martes, 17 de febrero de 2009

Alelos

Un alelo (del grirgo: αλλήλων, allélon: uno a otro, unos a otras) es cada una de las formas alternativas que puede tener un gen que se diferencian en su secuencia y que se puede manifestar en modificaciones concretas de la función de ese gen. Al ser la mayoría de los mamíferos diploides estos poseen dos alelos de cada gen, uno de ellos procedente del padre y el otro de la madre. Cada par de alelos se ubica en igual locus o lugar del cromosoma.
El concepto de alelo se entiende a partir de la palabra alelomorfo (en formas alelas) es decir, algo que se presenta de diversas formas dentro de una población de individuos.
Cada una de las alternativas que puede tener un gen de un caracter.

Por ejemplo, el gen que regula el color de la semilla del guisante presenta dos alelos: uno que determina color verde y otro que determina color amarillo. Por regla general se conocen varias formas alélicas de cada gen; el alelo más extendido de una población se denomina "alelo normal, salvaje o silvestre", mientras que los otros más escasos, se conocen como "alelos mutantes". Así, de forma general, con dos alelos (a1 y a2) podemos tener 3 tipos de combinaciones en diploides:

Dos alelos: a1, a1 (homocigoto para el alelo a1)
Dos alelos: a2, a2 (homocigoto para el alelo a2)
Un alelo a1 y otro a2: (heterocigoto: a1, a2)

En la genética mendeliana se diferencian ambos alelos por la relación de dominancia, de forma que uno de estos alelos es dominante (representado como A) y otro recesivo (a). Dando lugar, en diploides a:

Homocigoto dominante (AA)
Homocigoto recesivo (aa)
Heterocigoto (Aa)

lunes, 16 de febrero de 2009

Genes




¿Qué es un gen?

Para entender cómo funcionan los genes, repasaremos algunos conceptos fundamentales de biología. La mayoría de seres vivos están compuestos por células que contienen una sustancia denominada ácido desoxirribonucleico (ADN). El ADN está retorcido sobre sí mismo, formando unas estructuras denominadas cromosomas.

La mayoría de las células del cuerpo humano tienen 23 pares de cromosomas, sumando un total de 46. Sin embargo, las células reproductoras: los espermatozoides y los ovocitos, contienen solamente 23 cromosomas. Tú recibiste la mitad de los cromosomas del ovocito de tu madre y la otra mitad del espermatozoide de tu padre. Los niños reciben un cromosoma X de su madre y un cromosoma Y de su padre, mientras que las niñas reciben un cromosoma X de cada uno de sus progenitores.

¿Y qué pintan los genes en todo esto? Los genes son pequeños fragmentos de ADN contenidos en los cromosomas que determinan características o rasgos humanos específicos, como la estatura o el color del pelo. Puesto que has heredado un cromosoma de cada par de cada uno de tus progenitores, tienes dos versiones de cada gen (exceptuando algunos genes contenidos en los cromosomas X e Y en los niños, que solo tienen uno de cada). Algunos rasgos dependen solo de un gen, mientras que otros dependen de combinaciones de genes. Puesto que cada persona tiene entre 25.000 y 35.000 genes diferentes, ¡hay una cantidad casi infinita de combinaciones posibles!

Genes y herencia

La herencia es la transmisión de genes de una generación a la siguiente. Tú has heredado los genes de tus padres. La herencia te ayuda a ser quien eres: alto o bajo, rubio o moreno, de ojos verdes o azules.

¿Pueden tus genes determinar si vas a convertirte en un alumno de sobresalientes o en un gran atleta? La herencia desempeña un papel importante, pero el ambiente en que vives (que incluye factores como los alimentos que comes y las personas con quienes te relacionas) también influye en tus habilidades e intereses.

¿Cómo funcionan los genes?

El ADN contiene cuatro sustancias químicas (adenina, timina, citosina y guanina –abreviadas con las letras A, T, C y G) que están insertadas en pares dentro de hebras enrolladas y extremadamente finas. ¿Cómo de finas? Las células son diminutas –invisibles al ojo humano- y cada célula del cuerpo contiene entre metro y medio y dos metros de filamento de ADN, de modo que, si desenrolláramos todas las hebras de ADN contenidas en todas las células de tu cuerpo, ¡sumarían en total entre cuatro y cinco mil millones de kilómetros! Los patrones de ADN son códigos para fabricar proteínas, las sustancias químicas que permiten que nuestros cuerpos funcionen y crezcan.

Los genes contienen las instrucciones necesarias para fabricar las distintas proteínas de nuestros cuerpos (como las enzimas que nos permiten digerir los alimentos o el pigmento que nos da color a los ojos). Cuando tus células se duplican, transmiten esa información genética a las nuevas células. Los genes pueden ser dominantes o recesivos. Los genes dominantes manifiestan su efecto aunque solamente haya una copia de ese gen / esa variante genética en el par. Pero, para que se manifieste un rasgo o una enfermedad recesiva, la persona deberá tener el mismo gen / la misma variante genética en los dos cromosomas del par.

domingo, 15 de febrero de 2009

Estructura de los cromosomas

Lo que organiza toda la herencia. Siempre están individualizadas (solo se hacen aparentes en la división). El número es específico (número determinado para cada especie). El número no da la evolución, el mensaje evolutivo lo da la calidad. Generalmente son números pares. Todas las células tienen su contenido en cromosomas.



Cuando los brazos son iguales y solo se dividen por el centrosoma, se llaman metocéntricos

Cuando una parte es mas chica que otra se le llaman telecéntricos.

Cuando uno es casi invisible se llaman acrocéntricos.

La porción de los brazos da una forma aparente. Así se sacan los cariotipos y se estudian las familias genéticas. Siempre son en parejas. A todas las parejas se les llaman cromosomas homólogos. Solo hay un par diferente (heterocromosomas), que determinan el sexo.

Cariotipo: forma, número y mapeo ( cont.) de los cromosomas para cada especie e individuo. Nos ayuda a colocarlos, manejarlos.

Externamente se ven 2 brazos y un centrosoma. El exterior es proteína y su contenido es DNA y otras proteínas. Viéndolo mas profundamente, se ve que el contenido son unas estructuras no muy definidas llamada cromatidas, formadas por DNA y otras proteínas. Las cromatidas, a mayor aumento, se ve que constituyen la doble hélice. Cada cromatida tiene una doble hélice. Viéndola a mayor aumento, se observa con el nucleotido.

El papel de los cromosomas es genético. Son los transmisores de toda la información de célula a célula e individuo a individuo. Son la barrera que impide la difuminación de las especies. Son el mecanismo para aislar y preservar las especies. Tienen la capacidad de variar, lo que permite la evolución ( pero no es muy díficil ). También son a base entre variación y fijación. Además depende de ellos todo el metabolismo fino ( síntesis proteica, todo lo que ocurre en la célula ):

El RNA entra y sale del cromosoma.

Meiosis




Es un proceso de reducción cromática por el que los cromosomas se reducen a la mitad. En la meiosis I (etapa reduccionaria) se reduce el número diploide de cromosomas a la mitad (haploide) pero aún los cromosomas son dobles. En la meiosis II (etapa ecuacional) se mantiene el número cromosómico haploide conseguido en la etapa anterior. Los cromosomas son simples.




  • Meiosis I: Está precedida por una interfase durante la cual se duplica el materialo genético.



  1. PROFASE I: La envoltura nuclear y el nucleolo se desorganizan, los centríolos migran a polos oppuestos, duplicándose y se ordena el huso acromáticop. Se divide en 5 etapas: Leptonema, Cigonema, Paquinema, Diplonema y Diacinesis.

  2. PROMETAFASE I: Los cromosomas migran al plano ecuatorial de la celula.

  3. METAFASE I: Los cromosomas se alinean en el plano ecuatorial. Los 2 cromosomas del bivalente se unen por medio del centrómero a la misma fibra del uso acromático.

  4. ANAFASE I: Los 2 cromosomas homólogos unidos a la misma fibra dek huso se repelen y migran a polos opuestos. Cada cromosoma está formado por 2 cromatimas.

  5. TELOFASE I: Cuando los cromosomas llegaron a los polos, se desorganizan el huso acromático y los ásteres, se reprganizan la envoltura nuclear y los nucleolos y se constituyen los núcleos hijos.


Citocinesis: Se produce simultáneamentye con la telofase, y da como resultado 2 celula hijas con un número haploide de cromosomas.



Intercinesis: Es un período que tiene lugar entre la meiosis I y II y no se realiza duplicación del ADN.




  • Meiosis II: Los procesos de esta división son semejantes a los de una mitosis en una célula haploide.



  1. PROFASE II: Se condensan los cromosomas, se desintegran los nucleolos, los centríolos migran a los polos y se duplican, formación del huso acromático y se desorganiza la envoltura nuclear.

  2. PROMETAFASE II: Los cromosomas condensados migran a la placa ecuatorial de la célula.

  3. METAFASE II: Los cromosomas se alinean en la placa ecuatorial, y cada cromosoma se une a una fibra del huso acromático.

  4. ANAFASE II: Se fusiona el centrómero y se separan las 2 cromátidas de cada cromosoma. Cada una migra a un polo diferente.

  5. TELOFASE II: Los grupos cromosómicos llegan a los polos, el huso acromático se desorganiza, se reorganizan la envoltura nuclear y el nucleolo, se dispersan los cromosomas y se transforman en cromatina.


Citocinesis: Separación de los citoplasmas de las células hijas.



El proceso melótico parte de una célula diploide que da como resultado 2 haploides, y a partir de éstas dos (melosis II) se obtienen 4 haploides.



Melosis, variabilidad genética y evolución



La reproducción sexual introduce una importante proporción de variaciones genéticas. Cuanto mayor sea la diversidad de gametas formadas en cada progenitor, mayor será la probabilidad de originar combinaciones diferentes por fecundación, y mayor será la diversidad de los descendientes. Una célula diploide, con 2 pares de cromosomas homólogos, originará por melosis 4 gametas haploides (uno de la madre y otro del padre). En la Metafase I se va a determinar en qué sentido migrarán en la Anafase I. Hay dos opciones:



  • Puede ocurrir que los 2 cromosomas paternos migren juntos a un polo y los dos maternos al opuesto.

  • Puede ocurrir que migren al mismo polo el cromosoma materno del par homólogo y el paterno del par homólogo. Los otros cromosomas, migran al polo opuesto.


  • Espermatogenesis

    Es el mecanismo encargado de la producción de espermatozoides; es la gametogénesis en el hombre. Este proceso se desarrolla en los testículos. La espermatogénesis tiene una duración aproximada de 64 a 75 días en la especie humana.

    Los espermatozoides son células haploides, es decir, tienen la mitad de los cromosomas que una célula somática. La reducción se produce mediante una división celular peculiar, la meiosis en el cuál una célula diploide (2n), experimentará dos divisiones celulares sucesivas, con la capacidad de generar cuatro células haploide (n).




    Ovogenesis


    es el proceso de formación y diferenciación de los gametos femeninos u óvulos en los animales, incluido el ser humano. La ovogénesis, al igual que la espermatogénesis, se basa en el proceso de la meiosis, que produce, mediante dos divisiones sucesivas, cuatro células con un genotipo recombinado y la mitad de ADN.



    Mitosis

    Mitosis es la división nuclear más citocinesis, y produce dos células hijas idénticas durante la profase, prometafase, metafase, anafase y telofase. La interfase frecuentemente se incluye en discusiones sobre mitosis, pero la interfase técnicamente no es parte de la mitosis, más bien incluye los etapas G1, S y G2 del ciclo celular. Interfase & mitosis

    Interfase

    La célula está ocupada en la actividad metabólica preparándose para la mitosis (las próximas cuatro fases que conducen e incluyen la división nuclear). Los cromosomas no se disciernen claramente en el núcleo, aunque una mancha oscura llamada nucleolo, puede ser visible. La célula puede contener un par de centriolos ( o centros de organización de microtubulos en los vegetales ) los cuales son sitios de organización para los microtubulos.
    Profase

    La cromatina en el núcleo comienza a condensarse y se vuelve visible en el microscopio óptico como cromosomas. El núcleolo desaparece. Los centríolos comienzan a moverse a polos opuestos de la célula y fibras se extienden desde los centrómeros. Algunas fibras cruzan la célula para formar el huso mitótico.
    Prometafase

    La membrana nuclear se disuelve, marcando el comienzo de la prometafase. Las proteínas de adhieren a los centrómeros creando los cinetocoros. Los microtubulos se adhieren a los cinetocoros y los cromosomas comienzan a moverse.
    Metafase

    Fibras del huso alinean los cromosomas a lo largo del medio del núcleo celular. Esta línea es referida como, el plato de la metafase. Esta organización ayuda a asegurar que en la próxima fase, cuando los cromosomas se separan, cada nuevo núcleo recibirá una copia de cada cromosoma.
    Anafase

    Los pares de cromosomas se separan en los cinetocoros y se mueven a lados opuestos de la célula. El movimiento es el resultado de una combinación de: el movimiento del cinetocoro a lo largo de los microtubulos del huso y la interacción física de los microtubulos polares.
    Telofase

    Los cromatidos llegan a los polos opuestos de la célula, y nuevas membranas se forman alrededor de los núcleos hijos. Los cromosomas se dispersan y ya no son visibles bajo el microscopio óptico. Las fibras del huso se dispersan, y la citocinesis o la partición de la célula puede comenzar también durante esta etapa.
    Citocinesis

    En células animales, la citocinesis ocurre cuando un anillo fibroso compuesto de una proteína llamada actína, alrededor del centro de la célula se contrae pellizcando la célula en dos células hijas, cada una con su núcleo. En células vegetales, la pared rígida requiere que un placa celular sea sintetizada entre las dos células hijas.

    Dogma central de la biologia



    Watson y Crick sospecharon que una vez elucidada la estructura del ADN, sería más fácil entender su función. Razonaron, entonces, que si el ADN era la molécula que transmitía la información genética a las células hijas, esta debía funcionar como un código. Para mitad de los años 1950 se sabía que la secuencia de nucleótidos en el ADN daba origen a una secuencia de polipéptidos. Es decir, la molécula de ADN debía dirigir la síntesis de proteínas.

    ADN → Proteínas

    Pero si esto era cierto, faltaba dilucidar una pieza del rompecabezas ya que sabía que las proteínas se sintetizaban fuera del núcleo. ¿Cómo podía el ADN, que estaba dentro del núcleo, dirigir la síntesis de proteínas fuera del mismo? A Crick se le ocurrió la idea de que debía existir un intermediario.

    ADN → ¿? → Proteínas

    Un posible candidato para intermediario era el ARN, que se encuentra en el citoplasma. El ARN tenía varias características que lo hacían un firme candidato:

    1. un esqueleto de azúcares y fosfatos (a pesar de que tiene un azúcar distinto, ya que el ARN tiene ribosa en vez de desoxirribosa),
    2. tanto el ADN como el ARN usan las mismas bases nitrogenadas, pero el ARN tiene uracilo en vez de timina,
    3. el uracilo se puede unir a la adenina como lo hace la timina,
    4. el ARN es una cadena simple.

    Crick sintetizó esta idea en lo que él llamó el dogma central de la biología, que especifica que el ADN se traduce ARN y este, a su vez, dirige la producción de proteínas.

    ADN → ARN → Proteínas

    Según este postulado, la información fluye de manera unidireccional: no puede moverse de las proteínas al ADN. Es decir, una vez que la información llega a las proteínas, estas no pueden ser cambiadas o, lo que es lo mismo, las proteínas no pueden influir los genes. Si bien Crick usó el término dogma en un sentido figurado y quizá con humor, ya que las ideas científicas sólo son aceptadas hasta que aparezca evidencia experimental que las desmienta, durante algún tiempo esta idea adquirió cierta dimensión de verdad absoluta en la mayoría de los libros de texto.

    viernes, 13 de febrero de 2009

    Ciclo Celular





    De acuerdo a la teoría celular establecida por el biólogo alemán Rudolf Virchoff en el siglo XIX, “las células sólo provienen de células”. Las células existentes se dividen a través de una serie ordenada de pasos denominados ciclo celular; en el la célula aumenta su tamaño, el número de componentes intracelulares (proteínas y organelos), duplica su material genético y finalmente se divide.

    El ciclo celular se divide en fases

    1) Interfase, que consta de:

    Fase de síntesis (S): En esta etapa la célula duplica su material genético para pasarle una
    copia completa del genoma a cada una de sus células hijas.

    Fase G1 y G2 (intervalo): Entre la fase S y M de cada ciclo hay dos fases denominadas
    intervalo en las cuales la célula esta muy activa metabolicamente, lo cual le permite
    incrementar su tamaño (aumentando el número de proteínas y organelos), de lo contrario las
    células se harían más pequeñas con cada división.