lunes, 23 de marzo de 2009

Genetica mendeliana


Genes laterales


La transferencia de genes horizontal (TGH), también conocida como transferencia de genes lateral (TGL), es un proceso en el que un organismo transfiere material genético a otra célula que no es descendiente. Por el contrario, la transferencia vertical ocurre cuando un organismo recibe material genético de sus ancestros, por ejemplo de sus padres o de una especie de la que ha evolucionado. La mayoría de los estudios sobre genética se han centrado en la prevalencia de la transferencia vertical, pero hay un sentimiento actualmente de que la transferencia horizontal es un fenómeno significante. La transferencia artificial de genes horizontal es una forma de ingeniería genética.

MUTACIONES GENETICAS


En genética y biología, la mutación es una alteración o cambio en la información genética (genotipo) de un ser vivo y que, por lo tanto, va a producir un cambio de características, que se presenta súbita y espontáneamente, y que se puede transmitir o heredar a la descendencia. La unidad genética capaz de mutar es el gen que es la unidad de información hereditaria que forma parte del ADN. En los seres multicelulares, las mutaciones sólo pueden ser heredadas cuando afectan a las células reproductivas. Una consecuencia de las mutaciones puede ser una enfermedad genética, sin embargo, aunque en el corto plazo puede parecer perjudiciales, a largo plazo las mutaciones son esenciales para nuestra existencia. Sin mutación no habría cambio y sin cambio la vida no podría evolucionar.

Código Genético


El código genético es la regla de correspondencia entre la serie de nucleótidos en que se basan los ácidos nucleicos y las series de aminoácidos (polipéptidos) en que se basan las proteínas. Es como el diccionario que permite traducir la información genética a estructura de proteína. A, T, G, y C son las "letras" del código genético y representan las bases nitrogenadas adenina, timina, guanina y citosina, respectivamente. Cada una de estas bases forma, junto con un glúcido (pentosa) y un grupo fosfato, un nucleótido; el ADN y el ARN son polímeros formados por nucleótidos encadenados.

Cada tres nucleótidos de la cadena (cada triplete) forman una unidad funcional llamada codón. Como en cada cadena pueden aparecer cuatro nucleótidos distintos (tantos como bases nitrogenadas, que son el componente diferencial) caben 43 (4x4x4, es decir, 64) combinaciones o codones distintos. A cada codón le corresponde un único “significado”, que será o un aminoácido, lo que ocurre en 61 casos, o una instrucción de “final de traducción”, en los tres casos restantes (ver la tabla). La combinación de codones que se expresa en una secuencia lineal de nucleótidos, conforman cada gen necesario para producir la síntesis de una macromolécula con función celular específica.

TRADUCCÍON GENETICA


La traducción es el paso de la información transportada por el ARN-m a proteína. La especificidad funcional de los polipéptidos reside en su secuencia lineal de aminoácidos que determina su estructura primaria, secundaria y terciaria. De manera, que los aminoácidos libres que hay en el citoplasma tienen que unirse para formar los polipéptidos y la secuencia lineal de aminoácidos de un polipéptido depende de la secuencia lineal de ribonucleótidos en el ARN que a su vez está determinada por la secuencia lineal de bases nitrogenadas en el ADN. Los elementos que intervienen en el proceso de traducción son fundamentalmente: los aminoácidos, los ARN-t (ARN transferentes), los ribosomas, ARN-r (ARN ribosómico y proteínas ribosomales), el ARN-m (ARN mensajero), enzimas, factores proteicos y nucleótidos trifosfato (ATP, GTP).


Tipos de RNA y sus funciones


Existen principalmente 3 tipos de RNA (ARN, ácido ribonucleico), cada uno de ellos sintetizados a partir de secuencias de DNA concretas, y con una función específica:

  • mRNA: RNA mensajero, es el encargado de transmitir la información genética desde el DNA hasta los ribosomas. El código de bases nitrogenadas de nuestro RNA pasará en los ribosomas a una secuencia de aminoácidos concreta.

  • tRNA. RNA transferente, encargado de buscar los aminoácidos específicos en el citosol y llevarlos al ribosoma para proceder a la síntesis de proteínas.

  • rRNA: RNA ribosómico, componente intrínseco de los ribosomas, con importantes funciones en ese proceso de traducción de mRNA en proteínas.

A nivel funcional, el RNA juega un papel importante, ya que si el DNA contiene la información genética, el RNA hace posible que esta se exprese en términos de "síntesis de proteínas".



Transcripción


La transcripción del ADN es el primer proceso de la expresión genética, mediante el cuál se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteína utilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.

domingo, 22 de marzo de 2009

Duplicación

El proceso de duplicacion de ADN es el mecanismo que permite al ADN duplicarse (es decir, sintetizar una copia idéntica). Esta duplicación del material genético se produce de acuerdo con un mecanismo semiconservador, lo que indica que las dos cadenas complementarias del ADN original, al separarse, sirven de molde cada una para la síntesis de una nueva cadena, complementaria de la cadena molde, de forma que cada nueva doble hélice contiene una de las cadenas del ADN original. Gracias a la complementariedad entre las bases que forman la secuencia de cada una de las cadenas, el ADN tiene la importante propiedad de reproducirse idénticamente, lo que permite que la información genética se transmita de una célula madre a las células hijas y es la base de la herencia del material genético.

Estructuras de las histonas


Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.

Las cuatro histonas core, o nucleares, forman un octámero (paquetes de 8 moléculas) alrededor del cual se enrolla el ADN, en una longitud variable en función del organismo. Este octámero se ensambla a partir de un tetrámero de las histonas llamadas H3 y H4, al que se agregan dos heterodímeros de las histonas denominadas H2A y H2B. Las histonas externas, o linker, H1 (y H5 en aves) interaccionan con el ADN internucleosomal. El conjunto del ADN enrollado alrededor del octámero de histonas, junto con la histona H1 y una cierta longitud de ADN linker, o internucleosomal constituye lo que se conoce como nucleosoma. Las histonas core desarrollan un papel decisivo en el primer nivel de compactación del ADN dentro del núcleo, en la estructura conocida como nucleosoma. Las histonas linker, por otro lado, producen un empaquetamiento de orden superior de los nucleosomas.



Cadenas antiparalelas




Las dos cadenas de ADN son antiparalelas, por tal razón la ADN polimerasa puede solamente sintetizar un nuevo ADN en la dirección 5' a 3'. Esto produce problemas especiales para replicar una doble cadena de ADN. En la cadena de arriba, la primasa sintetiza un ARN base en la dirección 5' a 3'. La primasa se va, y la ADN polmerasa agrega nucleótidos de ADN al ARN base en la dirección 5' a 3'. En E. coli la enzima usada es la ADN polimeraasa III. Este nuevo ADN es llamada cadena retrasada, debido a que es elaborada en la dirección opuesta al movimiento de la bifurcación de replicación. El segmento producido se le conoce también por fragmento de Okazaki.





Estructura de los nucleótidos



Los ácidos nucleicos están formados por la unión de miles de monómeros, que son los nucleótidos. éstos están formados químicamente por una azucar pentosa (de 5 C), a la cual se une un grupo fosfato y una base nitrogenada, que pueden ser purinas (dos heterociclos con N fusionados) o primidínicas (derivadas de la piridina, un único heterociclo con N). las purinas incluyen a la adenina (A) y a la guanina (G), y las pirimidínicas a citosina (C), uracilo (U) y timina (T). El ADN o ácido desoxirribonucleico esá formado por la unión de desoxinucleótidos, conformados por la azucar desoxirribosa, el grupo fosfato y una de las 4 bases posibles: citosina, adenina, guanina y timina. la molécula de ADN está formada por el apareamiento de dos cadenas complementarias, mediante puente de H entre las bases: A-T y C-G. el ADN es el que contiene la información genética para el desarrollo del individuo. El ARN o ácido ribonucleico está formado por los ribo nucleótidos constituidos por la pentosa ribosa, el grupo fosfato y una de las bases: U, A, C y G. el ARN puede presentarse como cadena simple o bicatenaria, caso en el cual las bases se aparean: A-U y C-G. la molécula participa principalmente en la síntesis de proteínas.



CONSTITUCION DEL ADN


El ADN está constituido por unidades llamadas nucleótidos, unidas entre sí formando largas cadenas.

A su vez, cada nucleótido está formado por tres partes: un fosfato, el azúcar desoxirribosa (desoxi porque es pariente cercana de otro azúcar, la ribosa, sólo que le falta un oxígeno), y una de cuatro moléculas conocidas como bases nitrogenadas. Estas últimas se dividen en dos grupos: las bases púricas (adenina y guanina) y las pirimídicas (timina y citosina), llamadas así porque se derivan de dos compuestos, la purina y la pirimidina.

BACTERIOFAGOS


Los virus que infectan a las bacterias (bacteriófagos o fagos) fueron descubiertos hace casi 90 años y su empleo ha constituido una herramienta de trabajo fundamental para el espectacular desarrollo de la biología molecular. No obstante, los fagos, desde un principio, se vislumbraron como instrumentos adecuados para ser usados como agentes que permitieran combatir las enfermedades infecciosas causadas por bacterias. Este objetivo quedó relegado por el descubrimiento y empleo generalizado de los antibióticos. El preocupante y creciente desarrollo de las resistencias bacterianas ha hecho que, desde hace unos años, se piense de nuevo en los fagos como una alternativa terapéutica al uso de los antimicrobianos actuales. Se trataría de corregir los errores cometidos en el pasado y aprovechar la experiencia desarrollada durante años en los países de Europa del Este. En la presente revisión se analizan los trabajos realizados sobre el uso terapéutico de estos agentes, así como otras alternativas tales como el empleo de “enzibióticos”, las enzimas líticas codificadas por los fagos.